APOLLO NEWS REFERENCE panel handholds are single upright, peg-type, metal grips. They are fitted into the forward bulkhead, directly ahead of the astronauts, and can be grasped with the left or right hand. The restraint assembly consists of cables, restraint rings, and a constant-force reel system. The cables attach to D-rings on the PGA sides, waist high. The constant-force reel provides a downward force of approximately 30 pounds, it is locked during landing or docking operations. When the constant-force reel is locked, the cables are free to reel in. A ratchet stop prevents paying out of the cables and thus provides zero-g restraint. During docking maneuvers, the Commander uses pin adjustments to enable him to use the crewmen optical alignment sight (COAS) at the overhead (docking) window. ## DOCKING AIDS AND TUNNEL HARDWARE Docking operations require special equipment and tunnel hardware to effect linkup of the LM with the CSM. Docking equipment includes the crewman's optical alignment sight (COAS) and a docking target. A drogue assembly, probe assembly, the CSM forward hatch, and hardware inside the LM tunnel enable completion of the docking maneuver. The COAS provides the Commander with gross range cues and closing rate cues during the docking maneuver. The closing operation, from 150 feet to contact, is an ocular, kinesthetic coordination that requires control with minimal use of fuel and time. The COAS provides the Commander with a fixed line-of-sight attitude reference image, which appears to be the same distance away as the target. The COAS is a collimating instrument. It weighs approximately 1.5 pounds, is 8 inches long, and operates from a 28-volt d-c power source. The COAS consists of a lamp with an intensity control, a reticle, a barrel-shaped housing and mounting track, and a combiner and power receptacle. The reticle has vertical and horizontal 10° gradations in a 10° segment of the circular combiner glass, on an elevation scale (right side) of -10° to $+31.5^{\circ}$. The COAS is capped and secured to its mount above the left window (position No. 1). To use the COAS, it is moved from position No. 1 to its mount on the overhead docking window frame (position No. 2) and the panel switch is set from OFF to OVHD. The intensity control is turned clockwise until the reticle appears on the combiner glass; it is adjusted for required brightness. The docking target permits docking to be accomplished on a three-dimensional alignment basis. The target consists of an inner circle and a standoff cross of black with self-illuminating disks within an outer circumference of white. The target-base diameter is 17.68 inches. The standoff cross is centered 15 inches higher than the base and, as seen at the intercept, is parallel to the X-axis and perpendicular to the Y-axis and the Z-axis. The drogue assembly consists of a conical structure mounted within the LM docking tunnel. It is secured at three points on the periphery of the tunnel, below the LM docking ring. The LM docking ring is part of the LM midsection outer structure, concentric with the X-axis. The drogue assembly can be removed from the CSM end or LM end of the tunnel. Basically, the assembly is a three-section aluminum cone secured with mounting lugs to the LM tunnel ring structure. A lock and release mechanism on the probe, controls capture of the CSM probe at CSM-LM contact. Handles are provided to release the drogue from its tunnel mounts. The tunnel contains hardware essential to final docking operations. This includes connectors for the electrical umbilicals, docking latches, probemounting lugs, tunnel lights, and deadfacing switches. The probe assembly provides initial CSM-LM coupling and attenuates impact energy imposed by vehicle contact. The probe assembly may be folded for removal and for stowage within either end of the CSM transfer tunnel. ## **APOLLO NEWS REFERENCE** R-26 Docking Aids